新書推薦:

《
《法官如何裁判》(在法律规范体系的框架下如何寻求个案公正的判决之道,麦读译丛18)
》
售價:NT$
403.0

《
自由的危机:全球视角下的英国内战史
》
售價:NT$
806.0

《
索恩丛书·俾斯麦:欧洲风暴
》
售價:NT$
913.0

《
元首政治与帝国治理——以赫洛迪安《罗马帝国史》为考察对象
》
售價:NT$
347.0

《
镜观中国 1930年代的中国人、中国事和中国景 “走近中国”译丛系列
》
售價:NT$
398.0

《
地中海十城:西方文明的古典基因
》
售價:NT$
454.0

《
国学的天空(国学导师、“百家讲坛”主讲人傅佩荣经典之作)
》
售價:NT$
347.0

《
疑案里的中国史3艾公子著(中国史里扑朔迷离的40个疑案,惊奇好玩又脑洞大开受益匪浅)
》
售價:NT$
356.0
|
內容簡介: |
本书是美国伦斯勒理工学院(Rensselaer Polytechnic Institute, RPI)纪强(Qiang Ji)教授专门为概率图模型编写的一本专著。本书介绍了计算机视觉中的概率图模型(PGM),讨论了PGM及其在解决计算机视觉中存在的问题,提供了基本概念、定义和属性。专注于PGM的理论,以伪代码和推导的方式对PGM进行了详细的解释。
|
目錄:
|
译者序第1章 知识背景和学习动机11.1 引言11.2 本书目标和特点41.3 PGM介绍41.3.1 PGM的主要问题51.4 本书大纲6参考文献7第2章 基础概念92.1 引言92.2 随机变量与概率92.2.1 随机变量与概率定义92.2.2 基本的概率法则102.2.3 独立性和条件独立性112.2.4 均值、协方差、相关性和独立性112.2.5 概率不等式132.2.6 概率分布142.3 基本的估计方法172.3.1 极大似然法172.3.2 贝叶斯估计法192.4 优化方法192.4.1 连续优化192.4.2 离散优化212.5 采样和样本估计212.5.1 采样技术212.5.2 样本估计22参考文献23第3章 有向概率图模型253.1 引言253.2 贝叶斯网络253.2.1 BN表示253.2.2 BN的特性273.2.3 贝叶斯网络的类型293.3 BN推理343.3.1 精确推理方法353.3.2 近似推理方法473.3.3 高斯BN的推理553.3.4 贝叶斯推理563.3.5 不确定证据下的推理573.4 完全数据下的BN学习573.4.1 参数学习583.4.2 结构学习633.5 缺失数据下的BN学习693.5.1 参数学习693.5.2 结构学习753.6 人工贝叶斯网络规范763.7 动态贝叶斯网络773.7.1 简介773.7.2 学习和推理793.7.3 特殊的DBN813.8 分层贝叶斯网络913.8.1 分层贝叶斯模型913.8.2 分层深层模型953.8.3 混合分层模型983.9 附录993.9.1 式(3.63)证明993.9.2 高斯贝叶斯网络证明1003.9.3 拉普拉斯近似102参考文献102第4章 无向概率图模型1074.1 引言1074.1.1 定义和性质1074.2 成对马尔可夫网络1104.2.1 离散成对马尔可夫网络1104.2.2 标记观测马尔可夫网络1114.2.3 高斯马尔可夫网络1124.2.4 受限玻尔兹曼机1134.3 条件随机场1144.4 高阶长程马尔可夫网络1164.5 马尔可夫网络推理1174.5.1 精确推理方法1174.5.2 近似推理方法1204.5.3 其他MN推理方法1224.6 马尔可夫网络学习1234.6.1 参数学习1234.6.2 结构学习1294.7 马尔可夫网络与贝叶斯网络131参考文献132第5章 计算机视觉应用1355.1 引言1355.2 用于低级计算机视觉任务的PGM1355.2.1 图像分割1355.2.2 图像去噪1365.2.3 用MRF标记图像1365.2.4 用CRF进行图像分割1415.2.5 用贝叶斯网络进行图像分割1455.3 用于中级计算机视觉任务的PGM1495.3.1 目标检测与识别1495.3.2 场景识别1655.3.3 目标追踪1675.3.4 三维重建和立体视觉1775.4 用于高级计算机视觉任务的PGM1845.4.1 面部表情识别1845.4.2 人类活动识别1875.4.3 为人类活动识别刻画上下文208参考文献212索引220
|
|